DiRAC caters for a significant portion of STFC’s science, providing simulation and data modelling resources for the UK Frontier Science theory communities in Particlar Physics, astroparticle physics, Astrophysics, cosmology, solar system science and Nuclear physics (PPAN; collectively, STFC Frontier Science). Each year we published a selection of our science highlights and these can be found below.

For information on how our Science maps onto our Services, check out our Resources page.


2016 Highlights

In February the LIGO collaboration announced the first direct detection of gravitational waves and the first observation of binary black holes, and the DiRAC Data Centric System COSMA5 was used Read more…

The HPQCD Group also continued their research into Lattice QCD with the team using DiRAC to develop a new method for measuring the hadronic vacuum polariation (HVP). They were able to determine Read more…


2015 Highlights

Our HPQCD group members continue the search for new physics in the magnetic moment of the muon. They used DiRAC simulations to develop a new method of determining  Read more…

Colleagues from the HORIZON UK-Consortium furthered their quest to improve the interpretation of future imaging surveys from the Euclid satellite and the Large Synoptic Survey Telescope. These surveys aim to Read more…


2014 Highlights

Our UKMHD Consortium members have been looking at the Origins of Magnetism in the Quiet Sun and used DiRAC to run computationally challenging massively parallel simulations of convective  Read more…

The ViRGO Consortium continued with its flagship EAGLE simulation project, which is opening a window on the role and physics of baryons in the universe by creating hi-fidelity hydrodynamic simulations  Read more…


2013 Highlights

Our HOT QCD members have been investigating the Quark-Gluon Plasma phase that is created when quarks become free. Looking specifically at how the plasma expands and flows as a bulk material Read more…

The ECOGAL users have performed large-scale numerical simulations that can resolve the dense regions where stars form, and hence directly study the physics that drives star formation. These complex simulations Read more…