
Abstract
Most research software is written by researchers without professional
programming training, often causing subtle but costly performance
pitfalls. Small choices “like inefficient data structures”can greatly increase
execution time. Even skilled developers face challenges, as language- and
library-specific nuances are often learned informally. Slow software
reduces a researcherʼs productivity and wastes energy and shared
resources (e.g., HPC systems), affecting othersʼ work as well.

SIG-RPC builds community around research, development, and advocacy
for software performance best practices. We curate a knowledge base of
common performance traps and profiling tools, helping researchers and
developers write faster, more efficient, and more sustainable code.

A community dedicated to the research, development and advocacy of
performance best practices.

Robert Chisholm

sig-rpc.github.io

Supported by

● Society of Research Software
Engineering

● Software Sustainability Institute
● University of Sheffield RSE

Typical research code author

● Domain expert
○ They know lots about their field

● Self-taught programmers
○ Bad habits

● Short of time
○ Just need the code to work

● Often working with inherited code
○ May not be familiar with entire codebase

�� 🔬
�� 💻

This leads to coding traps

● Often unnoticed in code thatʼs
in use for many years by many
users

● Common traps found across
vastly different projects

● Potentially unreasonably poor
performance

Managing uniques with an array

Most common mistake.
With enough data 1000x speedup
possible.

Rather than a set

FFEA - A recent case study (26th August)

● Fluctuating Finite Element Analysis
(Molecular Modelling Software)

● C++ & OpenMP
● Development began 2010
● 9 authors

○ PhD Students
○ Postdoc Research Associates

● ~12 publications

Representative of much research software
https://ffea.bitbucket.io/

https://ffea.bitbucket.io/

FFEA - A recent case study (26th August)

● Asked to review itʼs performance
● Sent an example of a current

userʼs workload.
● Models a bundle of “rods”

./ffea myofilaments.ffea

Runtime 312 seconds

FFEA - A recent case study (26th August)

● Re-compile for gprof
(basic C/C++ profiler)

cmake
 -DCMAKE_C_FLAGS=-pg
 -DCMAKE_CXX_FLAGS=-pg
 -DCMAKE_EXE_LINKER_FLAGS=-pg
 -DCMAKE_SHARED_LINKER_FLAGS=-pg
 -DUSE_OPENMP=OFF
 ..

cmake --build .

● Then profile
./ffea myofilaments.ffea

gprof ffea gmon.out > analysis.txt

FFEA - A recent case study (26th August)

The results:
Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 53.94 2.12 2.12 36497000 0.00 0.00 rod::Rod::Rod(rod::Rod const&)

 19.85 2.90 0.78 72994000 0.00 0.00 std::vector<...>* std::__do_uninit_copy<...>(...)

 11.45 3.35 0.45 36497000 0.00 0.00 rod::Rod::~Rod()

 2.29 3.44 0.09 20715750 0.00 0.00 rod::get_element_midpoint(...)

 1.78 3.51 0.07 18073000 0.00 0.00 rod::Rod::get_p(int, std::array<float, 3ul>&, bool)

...

FFEA - A recent case study (26th August)

The results:
Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 53.94 2.12 2.12 36497000 0.00 0.00 rod::Rod::Rod(rod::Rod const&)

 19.85 2.90 0.78 72994000 0.00 0.00 std::vector<...>* std::__do_uninit_copy<...>(...)

 11.45 3.35 0.45 36497000 0.00 0.00 rod::Rod::~Rod()

 2.29 3.44 0.09 20715750 0.00 0.00 rod::get_element_midpoint(...)

 1.78 3.51 0.07 18073000 0.00 0.00 rod::Rod::get_p(int, std::array<float, 3ul>&, bool)

...

54% Rod copy constructor
20% Vector copy method
11% Rod destructor
🚩🚩🚩🚩🚩🚩🚩🚩

FFEA - A recent case study (26th August)

Reviewing the code:

https://bitbucket.org/FFEA/ffea/src/master/include/rod_structure.h

Per Rod:
30 scalars
28 vectors
3 strings

https://bitbucket.org/FFEA/ffea/src/master/include/rod_structure.h

FFEA - A recent case study (26th August)

https://bitbucket.org/FFEA/ffea/src/master/include/rod_structure.h

All methods
return a copy!

Reviewing the code:

https://bitbucket.org/FFEA/ffea/src/master/include/rod_structure.h

FFEA - A recent case study (26th August)

Reviewing the code:

● So the developer intended to return a pointer (or reference).
○ Not a copy.

● None of these methods were actually being chained.
○ It wouldnʼt have worked.

https://bitbucket.org/FFEA/ffea/src/master/src/rod_structure.cpp

https://bitbucket.org/FFEA/ffea/src/master/src/rod_structure.cpp

FFEA - A recent case study (26th August)

The fix:

● Replace all returns with void, they werenʼt being used.
○ Changing to a pointer/reference as intended would also work.

FFEA - A recent case study (26th August)

The fix:

● Replace all returns with void, they werenʼt being used.
○ Changing to a pointer/reference as intended would also work.

The result:

● Rebuild with gprof disabled, OpenMP enabled
● ./ffea myofilaments.ffea
● Runtime 31 seconds

○ 10x speedup

FFEA - A recent case study (26th August)

The significance:

● This mistake was introduced in February 2018
○ Identified 7.5 years later

● About an hourʼs work to identify and address
○ It took me longer to workout how to run the example

● Central to all simulations using Rods
○ 10x speedup can be assumed broad

● The full simulation previously took “a week” to run.
○ Now less than 11 hours.

How widespread are these
kinds of issues?

󰤇
(we donʼt know…yet)

(Iʼm working on it, right now)

How can we enable
researchers to catch and
address similar problems

sooner?

Develop Training

● Profiling & Optimisation (Python)
○ Carpentries style short-course
○ Developed Jan 2024
○ Now in beta status!
○ Maintained by Jost Migenda

(KCL) and myself

https://github.com/carpentries-incubator/pando-python
https://doi.org/10.5281/zenodo.16902755

https://github.com/carpentries-incubator/pando-python
https://doi.org/10.5281/zenodo.16902755

Develop Training - Doesnʼt Scale

● It took a month to develop less than a dayʼs worth of
training.
○ Further time spent refining/updating it with feedback.

● It only covers the most general Python.
● Itʼs not possible to create/deliver bespoke training for every

combination of languages and libraries used in research.

SIG-RPC Knowledge Base

https://sig-rpc.github.io/

● Mini guides
○ Profiler how-toʼs
○ Performance patterns

● Case Studies (eventually)
● Quick to write
● Easy to understand*

*in theory

https://sig-rpc.github.io/

Profilers

● Short high-level profiling intro
● Filtered by

○ Language
○ “Style”

● Suggested Sections:
○ Quickstart
○ Interpreting output
○ Limitations

Optimisations

● Filtered by
○ Language
○ “Subcategory”

● Suggested Sections:
○ Description
○ Example benchmark
○ Technical Detail

Easy to Maintain & Extend

● Static Jekyll website
● Guides written in markdown

○ YAML header; priority,
authors, name, language,
style, website

○ Markdown body
■ <!-- more --> create the

fold

RSECon25 Workshop

● Recently ran a workshop to
elicit feedback/submissions

● ~40 issues/PRs to work
through

Get Involved!

● SocRSE Slack #sig-rpc
● Mailing List (via website)
● AGM tomorrow 2pm
● We have hex-stickers

Contact me: robert.chisholm@sheffield.ac.uk

Case Study #2
(If iʼm too fast)

HYBIRD

● HYBIRD (Combined LBM & DEM solver)
● C++ & OpenMP
● Development began ~2013
● 1 author

○ PhD student then, now senior lecturer
● 2 contributors

○ PDRAs, reluctant programmers
● ~23 publications
● Used by UGT/PGR students, PDRAs,

collaborators

https://github.com/gnomeCreative/HYBIRD

https://github.com/gnomeCreative/HYBIRD

First Profile (DEM Tutorial, 1005 particles)

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 9.60 167.59 167.59 4068178008 0.00 0.00 DEM::particleParticleCollision(particle const*,
particle const*, tVect const&, Elongation*)
 8.66 318.68 151.08 153054682294 0.00 0.00 tVect::operator+(tVect const&) const
 6.38 429.95 111.27 12659255385 0.00 0.00 tVect::norm() const
 5.92 533.25 103.30 2392019595 0.00 0.00 elmt::predict(double const*, double const*)
 5.88 635.80 102.55 117157305920 0.00 0.00 tVect::operator*(double const&) const
 5.58 733.22 97.42 9568078380 0.00 0.00 project(tVect, quaternion)
 5.30 825.80 92.58 2392019595 0.00 0.00 elmt::correct(double const*, double const*)
 4.78 909.21 83.40 47840391900 0.00 0.00 quaternion::operator+(quaternion const&) const
 4.00 979.01 69.81 2380119 0.00 0.00 DEM::particleParticleContacts()
 3.61 1041.96 62.95 23934514861 0.00 0.00 tVect::reset()
 3.55 1103.95 61.99 45963670642 0.00 0.00 tVect::operator-(tVect const&) const
 3.40 1163.29 59.33 47840391900 0.00 0.00 quaternion::operator*(double const&) const
 3.32 1221.25 57.97 2380119 0.00 0.00 DEM::evaluateForces()
 2.99 1273.52 52.27 4784039190 0.00 0.00 quaternion::normalize()
 2.99 1325.73 52.21 16726846623 0.00 0.00 tVect::cross(tVect const&) const
 2.61 1371.27 45.54 4295249450 0.00 0.00 DEM::normalContact(...) const
 2.60 1416.69 45.41 tVect::operator-=(tVect const&)
 2.39 1458.37 41.68 16727253648 0.00 0.00 tVect::operator+=(tVect const&)
 2.13 1495.58 37.21 4295241157 0.00 0.00 DEM::FRtangentialContact(...)
 1.28 1517.96 22.38 6460471666 0.00 0.00 tVect::operator/(double const&) const

First Profile (DEM Tutorial, 1005 particles)

Self implemented
vector type?

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 9.60 167.59 167.59 4068178008 0.00 0.00 DEM::particleParticleCollision(particle const*,
particle const*, tVect const&, Elongation*)
 8.66 318.68 151.08 153054682294 0.00 0.00 tVect::operator+(tVect const&) const
 6.38 429.95 111.27 12659255385 0.00 0.00 tVect::norm() const
 5.92 533.25 103.30 2392019595 0.00 0.00 elmt::predict(double const*, double const*)
 5.88 635.80 102.55 117157305920 0.00 0.00 tVect::operator*(double const&) const
 5.58 733.22 97.42 9568078380 0.00 0.00 project(tVect, quaternion)
 5.30 825.80 92.58 2392019595 0.00 0.00 elmt::correct(double const*, double const*)
 4.78 909.21 83.40 47840391900 0.00 0.00 quaternion::operator+(quaternion const&) const
 4.00 979.01 69.81 2380119 0.00 0.00 DEM::particleParticleContacts()
 3.61 1041.96 62.95 23934514861 0.00 0.00 tVect::reset()
 3.55 1103.95 61.99 45963670642 0.00 0.00 tVect::operator-(tVect const&) const
 3.40 1163.29 59.33 47840391900 0.00 0.00 quaternion::operator*(double const&) const
 3.32 1221.25 57.97 2380119 0.00 0.00 DEM::evaluateForces()
 2.99 1273.52 52.27 4784039190 0.00 0.00 quaternion::normalize()
 2.99 1325.73 52.21 16726846623 0.00 0.00 tVect::cross(tVect const&) const
 2.61 1371.27 45.54 4295249450 0.00 0.00 DEM::normalContact(...) const
 2.60 1416.69 45.41 tVect::operator-=(tVect const&)
 2.39 1458.37 41.68 16727253648 0.00 0.00 tVect::operator+=(tVect const&)
 2.13 1495.58 37.21 4295241157 0.00 0.00 DEM::FRtangentialContact(...)
 1.28 1517.96 22.38 6460471666 0.00 0.00 tVect::operator/(double const&) const

First Profile (DEM Tutorial)

● Homemade vector, matrix
& quaternion classes.

● Lots of tiny methods
● Called billions of times

9% Runtime

6% Runtime

First Profile (DEM Tutorial)

● Homemade vector, matrix
& quaternion classes.

● Lots of tiny methods
● Called billions of times
● Nothing inlined

○ Relative call overhead,
likely high!

9% Runtime

6% Runtime

First Profile (DEM Tutorial)

● Rename file .cpp -> .inl
● Include it at the end of the

respective header
● Mark everything inline
● Runtime before: 24 mins

First Profile (DEM Tutorial)

● Rename file .cpp -> .inl
● Include it at the end of the

respective header
● Mark everything inline
● Before: 28 mins
● After: 14 mins

○ 1.95x speedup

Second Profile (LB tutorial 1, 50 nodes)

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 28.73 16.42 16.42 5451435 0.00 0.00 node::computeApparentViscosity(double const*, FluidMaterial const&)
 23.36 29.77 13.35 16000012 0.00 0.00 void std::__heap_select<std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, __gnu_cxx::__ops::_Iter_less_iter>(std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >,
__gnu_cxx::__ops::_Iter_less_iter)
 14.58 38.10 8.33 5372781 0.00 0.00 node::computeEquilibrium(double*)
 11.08 44.43 6.33 156 0.04 0.04 LB::getZ(unsigned int const&) const
 10.52 50.44 6.01 7072394 0.00 0.00 node::addForce(double*, tVect const&)
 5.53 53.60 3.16 7512840 0.00 0.00 node::reconstruct()
 1.92 54.70 1.10 6324299 0.00 0.00 node::solveCollision(double const*)
 0.98 55.26 0.56 5242043 0.00 0.00 node::shiftVelocity(tVect const&)
 0.98 55.82 0.56 2000001 0.00 0.00 LB::streaming(std::vector<wall, std::allocator<wall> >&, std::vector<object, std::allocator<object> >&)
 0.89 56.33 0.51 9011735 0.00 0.00 node::store()
 0.31 56.51 0.18 4000003 0.00 0.00 LB::cleanLists()
 0.19 56.62 0.11 68 0.00 0.00 node::initialize(double const&, tVect const&, double const&, double const&, tVect const&, double const&, tVect const&)

...

Second Profile (LB tutorial 1, 50 nodes)

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 28.73 16.42 16.42 5451435 0.00 0.00 node::computeApparentViscosity(double const*, FluidMaterial const&)
 23.36 29.77 13.35 16000012 0.00 0.00 void std::__heap_select<std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, __gnu_cxx::__ops::_Iter_less_iter>(std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >,
__gnu_cxx::__ops::_Iter_less_iter)
 14.58 38.10 8.33 5372781 0.00 0.00 node::computeEquilibrium(double*)
 11.08 44.43 6.33 156 0.04 0.04 LB::getZ(unsigned int const&) const
 10.52 50.44 6.01 7072394 0.00 0.00 node::addForce(double*, tVect const&)
 5.53 53.60 3.16 7512840 0.00 0.00 node::reconstruct()
 1.92 54.70 1.10 6324299 0.00 0.00 node::solveCollision(double const*)
 0.98 55.26 0.56 5242043 0.00 0.00 node::shiftVelocity(tVect const&)
 0.98 55.82 0.56 2000001 0.00 0.00 LB::streaming(std::vector<wall, std::allocator<wall> >&, std::vector<object, std::allocator<object> >&)
 0.89 56.33 0.51 9011735 0.00 0.00 node::store()
 0.31 56.51 0.18 4000003 0.00 0.00 LB::cleanLists()
 0.19 56.62 0.11 68 0.00 0.00 node::initialize(double const&, tVect const&, double const&, double const&, tVect const&, double const&, tVect const&)

...

std::__heap_select
23% runtime
Internal C++ list reallocation method

Second Profile (LB tutorial 1, 50 nodes)

...

 16000012 void std::__heap_select<std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, __gnu_cxx::__ops::_Iter_less_iter>(std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >,
__gnu_cxx::__ops::_Iter_less_iter) [3]
 0.00 0.00 1/16000012 LB::latticeBolzmannInit(std::vector<cylinder, std::allocator<cylinder> >&, std::vector<wall, std::allocator<wall> >&, std::vector<particle, std::allocator<particle> >&, std::vector<object, std::allocator<object> >&, bool, bool) [10]
 1.67 4.51 2000001/16000012 LB::latticeBolzmannStep(std::vector<elmt, std::allocator<elmt> >&, std::vector<particle, std::allocator<particle> >&, std::vector<wall, std::allocator<wall> >&, std::vector<object, std::allocator<object> >&) [5]
 1.67 4.51 2000001/16000012 LB::latticeBoltzmannFreeSurfaceStep() [6]
 10.01 27.08 12000009/16000012 LB::cleanLists() [4]
[3] 86.5 13.35 36.10 16000012+16000012 void std::__heap_select<std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, __gnu_cxx::__ops::_Iter_less_iter>(std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, __gnu_cxx::__ops::_Iter_less_iter)
[3]
 16.42 0.00 5451435/5451435 node::computeApparentViscosity(double const*, FluidMaterial const&) [8]
 8.33 0.00 5372781/5372781 node::computeEquilibrium(double*) [9]
 6.01 0.00 7072394/7072394 node::addForce(double*, tVect const&) [13]
 3.16 0.00 7512840/7512840 node::reconstruct() [14]
 1.10 0.00 6324299/6324299 node::solveCollision(double const*) [17]
 0.56 0.00 5242043/5242043 node::shiftVelocity(tVect const&) [18]
 0.51 0.00 9011735/9011735 node::store() [20]
 0.01 0.00 9854995/19856644 node::isFluid() const [30]
 0.00 0.00 22744828/22744828 node::massStream(unsigned int const&) const [45]
 0.00 0.00 22152591/32108542 node::isInterface() const [44]
 16000012 void std::__heap_select<std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, __gnu_cxx::__ops::_Iter_less_iter>(std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >, std::reverse_iterator<__gnu_cxx::__normal_iterator<double*, std::vector<double, std::allocator<double> > > >,
__gnu_cxx::__ops::_Iter_less_iter) [3]

...
Called inside LB::cleanLists()

Second Profile (LB tutorial 1, 50 nodes)

● Sort 2 lists
● Iterate both lists, to

remove duplicate
elements

● Fill a new combined
list

Second Profile (LB tutorial 1, 50 nodes)

● Use a set?

Second Profile (LB tutorial 1, 50 nodes)

● Use a set?
● This validation code was redundant!
● Before runtime: 2 minute

Second Profile (LB tutorial 1, 50 nodes)

● Use a set?
● This validation code was redundant!
● Before runtime: 2 minute
● After runtime: 1 minute

○ 1.8x speedup
○ But it had poor scalability

Third Profile (LB, 2.2 million nodes)

41% of parallel CPU time inside LB::smoothenInterface()

Top Hotspots
Function Module CPU Time % of CPU Time(%)
-------------------------- ------------ ---------- ----------------
LB::smoothenInterface hybird 18493.157s 41.4%
LB::streaming._omp_fn.1 hybird 3978.943s 8.9%
operator* hybird 2572.052s 5.8%
node::store hybird 2254.056s 5.0%
gomp_team_barrier_wait_end libgomp.so.1 1868.693s 4.2%
[Others] N/A 15531.628s 34.7%

Third Profile (LB, 2.2 million nodes)

LB::smoothenInterface() removes nodes neighbouring
empty nodes from fluid nodes.

Pseudocode:

Third Profile (LB, 2.2 million nodes)

That comment is real.

Every fluid neighbour of every empty node, would iterate the
entire fluid list to remove the neighbour if present.

Third Profile (LB, 2.2 million nodes)

This is obviously a natural fit for a
set()

● Before: 6 hours 51 minutes
● After: 2 hours 23 minutes

○ 2.87x speedup

Researchers are almost always
familiar with mathematical set,
rarely the data-structure set.

Fourth Profile (LB, different IO settings)

● Paraview is used to render
simulations

● HYBIRD exports to ASCII .vtk
files

● It would take ~20s to load a
frame from a large
simulation

● 20.4% of runtime reported
in IO::ouputStep()

https://github.com/fmtlib/dtoa-benchmark

https://github.com/fmtlib/dtoa-benchmark

Fourth Profile (LB, different IO settings)

● Rewrite for binary .vtk format
○ Now exporting whole buffers, rather than

individual doubles
● 10-25x speedup to the IO method
● 40x speedup to Paraview loading frames!

Get Involved!

● SocRSE Slack #sig-rpc
● Mailing List (via website)
● AGM tomorrow 2pm
● We have hex-stickers

Contact me: robert.chisholm@sheffield.ac.uk

