Abstract

Most research software is written by researchers without professional
programming training, often causing subtle but costly performance
pitfalls. Small choices “like inefficient data structures”can greatly increase
execution time. Even skilled developers face challenges, as language- and
library-specific nuances are often learned informally. Slow software
reduces a researcher’s productivity and wastes energy and shared
resources (e.g., HPC systems), affecting others’ work as well.

SIG-RPC builds community around research, development, and advocacy
for software performance best practices. We curate a knowledge base of
common performance traps and profiling tools, helping researchers and
developers write faster, more efficient, and more sustainable code.

sig-rpc.github.io

S|Reasonable
I{Performance
GIComputing

A community dedicated to the research, development and advocacy of
performance best practices.

Robert Chisholm

Supported by

e Society of Research Software
Engineering

e Software Sustainability Institute

e University of Sheffield RSE

Research
Software
Engineering

ReA University of

% Sheffield

SOCIETY OF RESEARCH
SOFTWARE ENGINEERING

f SOFTWARE
(: SUSTAINABILITY
INSTITUTE

Typical research code author

e Domain expert
o They know lots about their field
e Self-taught programmers
o Bad habits
e Shortoftime
o Just need the code to work
e Often working with inherited code
o May not be familiar with entire codebase

This leads to coding traps

e Often unnoticed in code that’s
in use for many years by many
users

e Common traps found across
vastly different projects

e Potentially unreasonably poor
performance

Managing uniques with an array

list out = []
while len(list out) < 1000:
t = random.randint(©, 2000)
if not t in list out:
list out.append(t)

Rather than a set

set out = {}

while len(set_out) < 1000:
t = random.randint(©, 2000)
set_out.add(t)

Most common mistake.
With enough data 1000x speedup
possible.

FFEA - A recent case study (26th August)

e Fluctuating Finite Element Analysis o

(Molecular Modelling Software) }
® C++ & Open M P . Microtqule \

e Development began 2010
e 9 authors
o PhD Students
o Postdoc Research Associates

® ~12publications https://ffea.bitbucket.io/

Representative of much research software

https://ffea.bitbucket.io/

FFEA - A recent case study (26th August)

e Asked to review it’s performance

e Sentanexample of a current
user’s workload.

e Models a bundle of “rods”

./ffea myofilaments.ffea

Runtime 312 seconds

FFEA - A recent case study (26th August)

e Re-compile for gprof e Then profile
(basic C/C++ profiler)
./ffea myofilaments.ffea
cmake
-DCMAKE_C_FLAGS=-pg gprof ffea gmon.out > analysis.txt

-DCMAKE_CXX_FLAGS=-pg
-DCMAKE_EXE_LINKER_FLAGS=-pg
-DCMAKE_SHARED_LINKER_FLAGS=-pg
-DUSE_OPENMP=0FF

cmake --build .

FFEA - A recent case study (26th August)

The results:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self

time seconds seconds calls
53.94 2.12 2.12 36497000
19.85 2.90 0.78 72994000
11.45 3.35 0.45 36497000
2.29 3.44 0.09 20715750
1.78 3.51 0.07 18073000

self
ms/call
0.00
0.00
0.00
0.00

0.00

total
ms/call
0.00
0.00
0.00
0.00

0.00

name

rod:

std:

rod:

rod:

rod:

:Rod: :Rod(rod::Rod const&)

:vector<...>* std::__do_uninit_copy<...>(...)
:Rod: :~Rod()

:get_element_midpoint(...)

:Rod: :get_p(int, std::array<float, 3ul>&, bool)

FFEA - A recent case study (26th August)

The results:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self

time seconds seconds calls
53.94 2.12 2.12 36497000
19.85 2.90 0.78 72994000
11.45 3.35 0.45 36497000
2.29 3.44 0.09 20715750
1.78 3.51 0.07 18073000

self

total

ms/call ms/call

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

name

rod:

std:

rod:

rod:

rod:

54% Rod copy constructor
20% Vector copy method

11% Rod destructor
"4 4 4 4" 4 4 4 4

:Rod: :Rod(rod: :Rod const&)

:vector<...>* std::__do_uninit_copy<...>(...)
:Rod: :~Rod ()

:get_element_midpoint(...)

:Rod: :get_p(int, std::array<float, 3ul>&, bool)

FFEA - A recent case study (26th August)

Reviewing the code:

Per Rod:
30 scalars
28 vectors
3 strings

/** Global simulation parameters - eventually read in from the .ffea file *x/

float viscosity = 0.6913 * pow(10, -3) / (mesoDimensions::pressure * mesoDimensions::time); // denominator: poiseu:
float timestep = 1le-12 / mesoDimensions::time;

float kT = 0;

float perturbation_amount = 0.001 * pow(10, -9) / mesoDimensions::length; /** Amount by which nodes are perturbed dt
int calc_noise = @;

int calc_steric = @; // Repulsive overlap of elements

int calc_vdw = 8; // Attractive protein-protein interactions

int pbc = 8;

float max_steric_energy = 50; /#** Potential energy when two rod elements are fully overlapped [energy units] #**/
std::string flow_profile; // the type of background flow experienced by the rod (set by .ffea file)

float flow_velocity[3] = {0}; // background flow imposed on the rod (set by .ffea file)
float shear_rate = 0; //

float translational_friction;
float rotational_friction; /** these will have to be changed when I end up implementing per-element radius, to be cc

/** Each set of rod data is stored in a single, c-style array, most of which go as {x,y,z,x,¥,z...} */

std::vector<float> equil_x; /*% L, Equilibrium configuration of the rod nodes. */
std::vectoxr<float> equil_m; /** L, Equilibrium configuration of the material frame. */
std::vector<float> current_r; /** L, Current configuration of the rod nodes. */
std::vectoxr<float> current_m; /** L, Current configuration of the material frame. %/
std::vector<float> internal_perturbed_x_energy_positive; /#** L, Energies associated with the perturbations we do in

std::vector<float> internal_perturbed_y_energy_positive; // L
std::vector<float> internal_perturbed_z_energy_positive; // L

mdde ciimmd s LT mmdy fmdnenal dadmdad mmmemes et el i, & R

https://bitbucket.org/FFEA/ffea/src/master/include/rod structure.h

https://bitbucket.org/FFEA/ffea/src/master/include/rod_structure.h

FFEA - A recent case study (26th August)

Rod(int length, int set_rod_no);

Reviewing the code: Rod(std::string path, int set_rod_no);
Rod set_units();
Rod compute_rest_enexrgy();
Rod do_timestep(std::shared_ptr<std::vector<RngStream>> &rng);
Rod add_force(const float4 &force, int node_index);
Rod pin_node(bool pin_state, int node_index);
Rod load_header(std::string filename);
Rod load_contents(std::string filename);

Al.l methOdS Rod load_vdw(const std::string filename);
Rod write_frame_to_file();

retu rn a Copy! Rod write_mat_params_vector(const std::vector<float> &vec, float stretch_scale_factor, float 1
Rod change_filename(std::string new_filename);
Rod equilibrate_rod(std::shared_ptr<std::vector<RngStream>> &rng);
Rod translate_rod(std::vector<float> &r, const float3 &translation_vec);
Rod rotate_rod(const float3 &euler_angles);
Rod scale_rod(float scale);
Rod get_centroid(const std::vector<float> &r, float3 ¢roid);
Rod get_min_max(const std::vector<float> &r, OUT float3 &min, float3 &max);
Rod get_p(int index, OUT float3 &p, bool equil);
Rod get_r(int node_index, OUT float3 &r, bool equil);

https://bitbucket.org/FFEA/ffea/src/master/include/rod structure.h

https://bitbucket.org/FFEA/ffea/src/master/include/rod_structure.h

FFEA - A recent case study (26th August)

Reviewing the code:

e Sothedeveloperintended to return a pointer (or reference).
o Not a copy.

e None of these methods were actually being chained.
o Itwouldn’t have worked.

std::cout << "Set units of rod " << this->rod_no << "\n";

return *this; /** Return a pointer to the object itself instead of void. Allows for method chaining! *=*/

-

https://bitbucket.org /FFEA/ffea/src/master/src/rod structure.cpp

https://bitbucket.org/FFEA/ffea/src/master/src/rod_structure.cpp

FFEA - A recent case study (26th August)

The fix:

e Replace all returns with void, they weren’t being used.
o Changing to a pointer/reference as intended would also work.

FFEA - A recent case study (26th August)

The fix:

e Replace all returns with void, they weren’t being used.
o Changing to a pointer/reference as intended would also work.

The result:

e Rebuild with gprof disabled, OpenMP enabled
e ./ffea myofilaments.ffea
® Runtime 31 seconds

o 10x speedup

FFEA - A recent case study (26th August)

The significance:

e This mistake was introduced in February 2018
o ldentified 7.5 years later
e About an hour’s work to identify and address
o Ittook me longer to workout how to run the example
e Central to all simulations using Rods
o 10x speedup can be assumed broad
e The full simulation previously took “a week” to run.
o Now less than 11 hours.

How widespread are these
kinds of issues?

- -
e ©

(we don’t know...yet)

R University of Turing 25/26

% Sheffield

/@\

Reasonable Performance
Computing at Sheffield

A case study of easy performance wins

Robert Chisholm

(I’'m working on it, right now)

How can we enable
researchers to catch and
address similar problems
sooner?

Develop Training

e Profiling & Optimisation (Python

Performance Profiling &
Optimisation (Python)

eveloped Jan 2024
ow in beta status!

EPISODES >

+ Summary and Setup ~

aintained by Jost Migenda

. Introduction to Profiling

Pr
o Carpentries style short-course ©®®=
O
O
O

2. Function Level Profiling
KCL) and myself
4. Line Level Profiling

m

Profiling Conclusion

o

. Introduction to Optimisation

7. Using Python Language Features and
the Standard Library

https://github.com/carpentries-incubator/pando-python
https://doi.org/10.5281/zenodo.16902755

v ‘ @ Leamer View v

Key Glossary Learner More v Search the All In One
Points Profiles page

Next: Introduction to... >

Summary and Setup

Welcome to Performance Profiling & Optimisation (Python) Training!

The training curriculum for this course is designed for researchers that are writing Python and lack formal
computer science training. The curriculum covers how to assess where time is being spent during
execution of a Python program, it also provides a high level understanding of how code executes and how
this maps to the limiting factors of performance and good practice.

If you are now comfortable using Python, this course may be of interest to supplement and advance your
programming knowledge. This course is particularly relevant if you are writing research code and desire
greater confidence that your code is both performant and suitable for publication.

This is an all-day course, however it normally finishes by early afternoon.

https://github.com/carpentries-incubator/pando-python
https://doi.org/10.5281/zenodo.16902755

Develop Training - Doesn’t Scale

e Ittook a month to develop less than a day’s worth of
training.
o Further time spent refining/updating it with feedback.
e It only coversthe most general Python.

e It’s not possible to create/deliver bespoke training for every
combination of languages and libraries used in research.

SIG-RPC Knowledge Base

I|Performance Homg Profiling ~ Optimisation ~)Parallel Blog Resources About

GlComputing

https://5|g-rpc.g|thub.|o/ Reasonable Performance Computing SIG

S|Reasonable

. . .
. M I n I g u I d eS A community dedicated to the research, development and o o raling ot Kespinformed ofUpeoming

advocacy of performance best practices for those that work closely ~ news, events and ways to get involved:

A) : ;
P f l h - with software. We hope to ensure that all code achieves a —
O ro I e r OW to S minimum standard of reasonable performance, whereby all “easy — —
rformance wins” have been exhausted. Contact sig-rpc-managers@society-rse.org
o Performance patterns "
C S d M II Learn more about profiling, optimisation, parallel computing and more, or contribute your own tips and tricks!
~ ase tu IeS (eventua y) Recent Blog Posts Upcoming Events

No events are currently scheduled, please join

: :
e Quick to write o BSereniitiey

olm (Chair}

. E a Sy to u n d e rSta n d * On the 10th September we're hosting our first workshop at RSECon25 (15:30-17:00 in OC0.04).

Welcome to SIG-RPC's Website!

2 Ro m (Chai
Hi and welcome to the reasonable performance computing special interest group’s (SIG-RPC’s)
website. We've put this together over the last few weeks based on the ideas discussed during our

second meeting (held 2024-12-06).

“in th
In eory Reasonable Performance Computing SIG

2 Mailing List

is a cor y dedicated to the

sig-rpc-managers@society-rse.org ig-pe ch, development and advocac

O sig-rpc
X sig_rpe

https://sig-rpc.github.io/

Profilers

e Short high-level profiling intro
e Filtered by

o Language

o “Style”
e Suggested Sections:

o Quickstart

o Interpreting output

o Limitations

Profilers for Python

Styles: All - Function-level - Line-level - Memory - Hardware-metrics - Timeline

VizTracer

Styles: Timeline

VizTracer is a simple Python package for timeline profiling. It's profiling output can be visualised
in a web browser with it's sub-package VizViewer.

Read More
cProfile
Styles: Function-Level

cProfile is a function-level profiler that is part of Python’s standard library. It is a command-
line profiler, that can also be called directly from Python. 3rd party packages such as snakeviz
can be used to visualise it's output in a web browser or Jupyter Notebook.

Read More
line_profiler
Styles: Line-Level

line_profiler is a Python package for line-level profiling. It is a command-line profiler, that
can also be used within Jupyter Notebooks. Functions marked with the @profile decorator are
profiled when 1line profiler is enabled during execution.

Read More
Intel VTune
Styles: Function-Level, Line-Level, Memory, Hardware-Metrics

Intel VTune Profiler is a fully-featured profiler that supports a broad range of languages. Users
wishing to perform function or line level profiling can use the default “Hotspots” configuration,
that will output profiling results in an interactive GUI with several visualisation options to aide
interpretation of CPU time within the profiled application.

There are also many more advanced profiling configurations available, covering memory and
hardware metrics, these are unlikely to be useful for the typical programmer.

Read More

Optimisations

e Filtered by
o Language
o “Subcategory”
e Suggested Sections:
o Description
o Example benchmark
o Technical Detail

Python Optimisation Patterns

Subcategory: None - Core - Numpy

Search... (beta)

Array Broadcasting (Vectorisation)

Subcategory: NumPy

The manner by which NumPy stores data in arrays enables it's functions to utilise array
broadcasting (more broadly known as vectorisation), whereby the processor executes one
instruction across multiple variables simultaneously, for every mathematical operation between

arrays. Array broadcasting can perform mathematical operations many times faster, however it
requires using supported functions.

Read More
List Comprehension
Subcategory: Core

List comprehension (e.g. [expression for item in iterable if condition == True])is
faster than constructing a list with a loop. it can’t be used for all list construction, such as where
items depend on one another, but it should be used whenever possible.

Read More

Set

Subcategory: Core

Similar to the mathematical concept of a set, Python (and most other languages) provides a
data structure set which is an unordered collection of unique values. Using a set is the
fastest way to detect unique items (e.g. if a in my_set) or remove duplicates (e.g. [x for x
in set(my_list)]).

Read More
numpy.array.resize()
Subcategory: NumPy

NumPy’s arrays (not to be confused with the core Python array package) are static arrays.
Unlike core Python's lists, they do not dynamically resize. Therefore if you wish to append to a
NumPy array, you must call resize() first. If you treat this like append() fora Python list,
resizing for each individual append, you will be performing significantly more copies and
memory allocations and hence make your code slower.

Read More

Easy to Maintain & Extend

e Static Jekyll website
e Guides written in markdown
o YAML header; priority,
authors, name, language,
style, website
o Markdown body

m <!-- more -->create the
fold

(D ¥ master ~ sig-rpc.github.io /_profilers / python / cprofilemd (& Q Gotofile t e
@ Robadob Update embedded images to use jekyll-figure plugin &3 9136fa5 - 8 months ago 0] Previous) History
Preview Code Blame 8 rw Q& 2@
y oz
2 1
3 published: true
4 authors: Robert Chisholn
s
6 name: cProfile
7 language: [Pytnon]
5 style: [Function-Level]
9 website: nttps://docs.python.org/3/1ibrary/profile.ntal
T
n
12 “cProfile’ is a function-level profiler that is part of Python's standard library. It is a command-line profiler, that can also be called directly from Python. 3rd party
packages such as [*snakeviz'](https://iiFfyclub.github. fo/snakeviz/) can be used to visualise it's output in a web browser or Jupyter Notebook.
1 <emore>
15
16 v # Quickstart
2
18 It can be called directly within your Python code as an imported package, however it’s easier to use it’s script interface:
19
%
21 python -m cProfile <script name> <arguments> > <output File>
i
2
4 For examle if you normelly run your program as:
E
%
27 python my_script.py input.csv
e =
2
30 You would call “cProfile’ to produce profiling output "analysis.txt’ with:
31
32 “sn
33 python -m cProfile my_script.py input.csv > analysis.txt
w i
35

RSECon25 Workshop

e Recently ran a workshop to
elicit feedback/submissions

e ~40issues/PRsto work
through

Peter Hill 2

Peter Heywood
Peter Heywood
Stephen, Peter 2
Liz Ing-Simmons 2
Nick Macey

Joe Wallwork
Sam Cunliffe 3
Rastislav Turanyi
afraz-ahmed
Esther Turner
Neil Butcher
Joe, Brad 3
Milan Malfait 2
Evgenij Belikov
llektra Christidi
Estara Arrant

Liz Ing-Simmons
Mike Croucher
Peter Briggs

Will Haese-Hill
Esther Turner
afraz-ahmed, Peter 4
Mark Einon
Peter Heywood
Milan Malfait 2
Stephen P Cook
Matt, Peter 3
Esther Turner
Peter Hill
Ghislain, Peter 3
Sam, Peter 2
Evgenij Belikov
Peter Hill

Esther Turner
Pierre Siddall
Abhishek Dasgupta

[sig-rpc/sig-rpe.github.io] [New]: Catalogue of Code Guidelines (Issue
[sig-rpc/sig-rpc.github.io] Investigate GenAl performance patten abilit;
[sig-rpe/sig-rpe.github.io] [Fix]: Ensure CMake build type / config are s
[sig-rpc/sig-rpc.github.io] Add contributing guide (Issue #54) - stepher
[sig-rpc/sig-rpe.github.io] Add additional example code to R "don’t gro
[sig-rpc/sig-rpc.github.io] [New]: Use Numba to optimise Python funct
[sig-rpc/sig-rpc.github.io] Fortran reshape (PR #56) - Closes #22. Adds
[sig-rpc/sig-rpc.github.io] Add an optimisation article for keyword sear
[sig-rpc/sig-rpc.github.io] [New]: Use BLAS/LAPACK instead of writing
[sig-rpc/sig-rpe.github.io] fix typos in numpy-array-broadcasting.md a
[sig-rpe/sig-rpe.github.io] [Fix]: numpy vectorize spelling (Issue #51) - |
[sig-rpc/sig-rpc.github.io] [New]: Consider prioritising compile time ov
[sig-rpe/sig-rpc.github.io] [New]: Fortran array reshaping (Issue #22) -
[sig-rpc/sig-rpc.github.io] Add profvis profiler for R (PR #48) - Mostly c«
[sig-rpe/sig-rpc.github.io] [New]: likwid tool suite (Issue #47) - jevbelike
[sig-rpc/sig-rpc.github.io] Add information about selecting which funct
[sig-rpe/sig-rpc.github.io] Semi-technical workflow (Issue #45) - EJArr:
[sig-rpc/sig-rpc.github.io] Add details of how timing estimates in optim
[sig-rpe/sig-rpc.github.io] Added MATLAB preallocation (PR #43) - You
[sig-rpc/sig-rpe.github.io] [Fix]: explain how to manipulate viztracer ou
[sig-rpc/sig-rpc.github.io] [New]: Browser Profiling tools (Issue #41) - |
[sig-rpc/sig-rpc.github.io] [Fix]: Tuple example variable name (Issue #4
[sig-rpe/sig-rpe.github.io] fix typos in numpy-array-broadcasting.md a
[sig-rpc/sig-rpc.github.io] Add section on using ‘seff' to measure slurm
[sig-rpe/sig-rpe.github.io] [Fix]: numpy-array-broadcasting code exam
[sig-rpc/sig-rpc.github.io] Enhance explanation of vectorisation vs app
[sig-rpe/sig-rpe.github.io] [Fix]: Text for numpy.array.resize tip unclear
[sig-rpc/sig-rpe.github.io] Fix typo and add clarifying final sentence to
[sig-rpc/sig-rpe.github.io] [Fix]: Tuple Example Numbers Wrong Way Ar
[sig-rpc/sig-rpc.github.io] [New]: Ad-hoc profiling in Python with timei
[sig-rpe/sig-rpe.github.io] Fix typo in numpy-array-broadcasting.md (F
[sig-rpc/sig-rpc.github.io] Spotted a typo in numpy array resize exampl
[sig-rpe/sig-rpc.github.io] Parallel: scalability (Issue #29) - jevbelikov cr
[sig-rpc/sig-rpe.github.io] Include discussion of static analysis tools (Is
[sig-rpc/sig-rpe.github.io] Issue Template ‘Improve an Optimisation Pat
[sig-rpc/sig-rpc.github.io] [New]: Python fstrings (Issue #25) - Pierre-si
[sig-rpe/sig-rpe.github.io] [Minor] Add copy code button (Issue #23) -

Get Involved!

SocRSE Slack #sig-rpc
Mailing List (via website)
AGM tomorrow 2pm

We have hex-stickers

Contact me: robert.chisholm@sheffield.ac.uk

L

¥

Case Study

(If i’'m too fast)

HYBIRD

HYBIRD (Combined LBM & DEM solver)
C++ & OpenMP
Development began ~2013
1 author
o PhD student then, now senior lecturer
2 contributors
o PDRAs, reluctant programmers
~23 publications
Used by UGT/PGR students, PDRAs,
collaborators

HYBIRD 7

https://github. com/gnomeCreatlve/HYBIRD

https://github.com/gnomeCreative/HYBIRD

First Profile (DEM Tutorial, 1005 particles)

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self
time seconds seconds calls s/call
9.60 167.59 167.59 4068178008 0.00
particle const*, tVect consté&, Elongation*)
8.66 318.68 151.08 153054682294 0.00
6.38 429.95 111.27 12659255385 0.00
5.92 533.25 103.30 2392019595 0.00
5.88 635.80 102.55 117157305920 0.00
5.58 733.22 97.42 9568078380 0.00
5.30 825.80 92.58 2392019595 0.00
4.78 909.21 83.40 47840391900 0.00
4.00 979.01 69.81 2380119 0.00
3.61 1041.96 62.95 23934514861 0.00
3.55 1103.95 61.99 45963670642 0.00
3.40 1163.29 59.33 47840391900 0.00
3.32 1221.25 57.97 2380119 0.00
2.99 1273.52 52.27 4784039190 0.00
2.99 1325.73 52.21 16726846623 0.00
2.61 1371.27 45.54 4295249450 0.00
2.60 1416.69 45.41
2.39 1458.37 41.68 16727253648 0.00
2.13 1495.58 37.21 4295241157 0.00
1.28 1517.96 22.38 6460471666 0.00

total
s/call

0.

ol eolNeolNoNeolNoNololNolNolololNololNe)

00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

0.00

(@]

.00
.00

name
DEM: :particleParticleCollision (particle const¥*,
tVect::operator+ (tVect consté&) const
tVect::norm() const

elmt: :predict (double const*, double const*)
tVect: :operator* (double consté&) const
project (tVect, quaternion)

elmt::correct (double const*, double const*)

quaternion::operator+ (quaternion consté&) const
DEM: :particleParticleContacts ()

tVect::reset ()

tVect::operator- (tVect consté&) const
quaternion: :operator* (double consté&) const

DEM: :evaluateForces ()
quaternion::normalize ()
tVect::cross (tVect consté&) const
DEM: :normalContact (...) const
tVect::operator-=(tVect consté&)
tVect::operator+=(tVect consté&)
DEM: :FRtangentialContact (...)

tVect: :operator/ (double consté&) const

First Profile (DEM Tutorial, 1005 particles)

Self implemented

Each sample counts as 0.01 seconds.
% cumulative self self total VeCtor type?
time seconds seconds calls s/call s/call name
9.60 167.59 167.59 4068178008 0.00 0.00 DEM::particleParticleCollision(particle const*,
particle const*, tVect consté&, Elongation*)

8.66 318.68 151.08 153054682294 0.00 0.00 tVect::operator+(tVect const&) const

6.38 429 .95 111.27 12659255385 0.00 0.00 tVect::norm() const

5.92 533.25 103.30 2392019595 0.00 0.00 elmt::predict(double const*, double const¥*)
5.88 635.80 102.55 117157305920 0.00 0.00 tVect: :operator* (double consté&) const

5.58 733.22 97.42 9568078380 0.00 0.00 project(tVect, quaternion)

5.30 825.80 92.58 2392019595 0.00 0.00 elmt::correct (double const*, double const*)
4.78 909.21 83.40 47840391900 0.00 0.00 quaternion::operator+(quaternion consté&) const
4.00 979.01 69.81 2380119 0.00 0.00 DEM::particleParticleContacts()

3.61 1041.96 62.95 23934514861 0.00 0.00 tVect::reset()

3.55 1103.95 61.99 45963670642 0.00 0.00 tVect::operator-(tVect const&) const

3.40 1163.29 59.33 47840391900 0.00 0.00 quaternion::operator* (double consté&) const
3.32 1221.25 57.97 2380119 0.00 0.00 DEM::evaluateForces ()

2.99 1273.52 52.27 4784039190 0.00 0.00 quaternion::normalize ()

2.99 1325.73 52.21 16726846623 0.00 0.00 tVect::cross(tVect consté&) const

2.61 1371.27 45.54 4295249450 0.00 0.00 DEM::normalContact(...) const

2.60 1416.69 45.41 tVect::operator-=(tVect consté&)

2.39 1458.37 41.68 16727253648 0.00 0.00 tVect::operator+=(tVect constg)

2.13 1495.58 37.21 4295241157 0.00 0.00 DEM::FRtangentialContact(...)

1.28 1517.96 22.38 6460471666 0.00 0.00 tVect::operator/(double consté&) const

First Profile (DEM Tutorial)

e Homemade vector, matrix
& quaternion classes.

e Lots of tiny methods

e Called billions of times

9% Runtime

tVect tVect::operator+(const tVect& vec) const {
return tVect(
X+Vec.Xx,
y+vec.y,
Z+vec.z);

¥

6% Runtime

tVect tVect::operator*(const double& scalar) const {
return tVect(
x*scalar,
y*scalar,

z*scalar);

First Profile (DEM Tutorial)

e Homemade vector, matrix
& quaternion classes.
e Lots of tiny methods
e Called billions of times
e Nothinginlined
o Relative call overhead,
likely high!

9% Runtime

tVect tVect::operator+(const tVect& vec) const {
return tVect(
X+Vec.X,
y+vec.y,
Z+vec.z);

¥

6% Runtime

tVect tVect::operator*(const double& scalar) const {
return tVect(
x*scalar,
y*scalar,

z*scalar);

First Profile (DEM Tutorial)

e Renamefile .cpp->.1inl

e Include it atthe end of the
respective header

e Mark everythinginline

e Runtime before: 24 mins

V' src/myvector.h (9 :

N
w
o

N
0
~

23
24
25

26

296
297
298

13

17

21
22
23

24

25
26

#include "myvector.inl"

#endif /* VECTOR_H */

// basic functions

void tVect::show() const {
inline void tVect::show() const {

COUL" ("IKXLL™, KLYKL", KKz

void tVect::printline(std::ofstream& outputFile) const {
inline void tVect::printlLine(std::ofstream& outputFile) const {

outputFile<<x<<"\t"<<y<<"\t"<<z<<"\n";

void tVect::print(std::ofstream& outputFile) const {
inline void tVect::print(std::ofstream& outputFile) const {

outputFile<<x<<"\t"<<y<<"\t"<<z<<"\t";

void tVect::printFixedlLine(std::ofstream& outputFile) const {
inline void tVect::printFixedLine(std::ofstream& outputFile) const

outputFile<<std::setprecision(8)<<std: :fixed<<x<<™ "<<y<<" "<«

z

First Profile (DEM Tutoria

e Renamefile .cpp->.1inl
e Include it atthe end of the
respective header
e Mark everythinginline
e Before: 28 mins
e After: 14 mins
o 1.95x speedup

V' src/myvector.h (9 :

N
w
o

N
0
~

23
24
25

26

296
297
298

13

17

21
22
23

24

25
26

#include "myvector.inl"

#endif /* VECTOR_H */

// basic functions

void tVect::show() const {
inline void tVect::show() const {

COUL" ("IKXLL™, KLYKL", KKz

void tVect::printline(std::ofstream& outputFile) const {
inline void tVect::printlLine(std::ofstream& outputFile) const {

outputFile<<x<<"\t"<<y<<"\t"<<z<<"\n";

void tVect::print(std::ofstream& outputFile) const {
inline void tVect::print(std::ofstream& outputFile) const {

outputFile<<x<<"\t"<<y<<"\t"<<z<<"\t";

void tVect::printFixedlLine(std::ofstream& outputFile) const {
inline void tVect::printFixedLine(std::ofstream& outputFile) const

outputFile<<std::setprecision(8)<<std: :fixed<<x<<™ "<<y<<" "<«

z

Second Profile (LB tutorial 1, 50 nodes)

Each sample counts as 0.01 seconds.
self

Q

°

time

28.
28 c
_ gnu_cxx::
14.
11.
10.
5.
32
.98
.98
.89
- Sl
.19

O O O O o

73
36

58
08
52
53

44

54

cumulative
seconds
16.
29.
__ops:
38.
.43
50.
53.
.70
55.
55.
56.
56.
56.

42
77

10

44
60

26
82
33
51
62

seconds

16.

42

calls
5451435

13.35 16000012

8

O O O OO WwWwo o

: Iter less iter)
2 S8
.33
.01
.16
.10
356
o6
25
.18
.11

5372781
156
7072394
7512840
6324299
5242043
2000001
9011735
4000003
68

self

s/call

0.
0.

O OO O OO oo oo

00
00

.00
.04
.00
.00
.00
.00
.00
.00
.00
.00

total
s/call

0.
.00

0

O OO O OO oo oo

00

.00
.04
.00
.00
.00
.00
.00
.00
.00
.00

name
node: :computeApparentViscosity (double const*, FluidMaterial consté)
void std:: heap select<std::reverse iterator< gnu cxx:: normal i

node: :computeEquilibrium (double*)

LB::getZ (unsigned int consté&) const

node: :addForce (double*, tVect consté&)

node: :reconstruct ()

node: :solveCollision (double const¥*)

node: :shiftVelocity (tVect consté&)

LB::streaming (std::vector<wall, std::allocator<wall> >&, std::vecto
node: :store ()

LB::cleanlLists ()

node::initialize (double consté&, tVect const&, double consté&, double

Second Profile (LB tutorial 1, 50 nodes)

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
28.73 16.42 16.42 5451435 0.00 0.00 node::computeApparentViscosity (double const*, FluidMaterial consté)
23.36 29.77 13.35 16000012 0.00 0.00 wvoid std:: heap select<std::reverse iterator< gnu cxx:: normal i
__gnu _cxx:: ops:: Iter less iter)
14.58 38.10 8.33 5372781 0.00 0.00 node::computeEquilibrium (double*)
11.08 44 .43 6.33 156 0.04 0.04 LB::getZ(unsigned int consté&) const
10.52 50.44 6.01 7072394 0.00 0.00 node::addForce (double*, tVect consté&)
5.53 53.60 3.16 7512840 0.00 0.00 node::reconstruct /()
1.92 54.70 1.10 6324299 0.00 0.00 node::solveCollision(double const*)
0.98 55.26 0.56 5242043 0.00 0.00 node::shiftVelocity(tVect consté&)
0.98 55.82 0.56 2000001 0.00 0.00 LB::streaming(std::vector<wall, std::allocator<wall> >&, std::vectc
0.89 56.33 0.51 9011735 0.00 0.00 node::store()
0.31 56.51 0.18 4000003 0.00 0.00 LB::cleanLists ()
0.19 56.62 0.11 68 0.00 0.00 node::initialize (double consté&, tVect consté&, double consté&, double

std::__heap_select
23% runtime
Internal C++ list reallocation method

Second Profile (LB tutorial 1, 50 nodes)

16000012 void std:: heap select<std::reverse iterator< gnu cxx:: normal iters
__gnu _cxx:: ops:: Iter less iter) [3]
0.00 0.00 1/16000012 LB::latticeBolzmannInit (std::vector<cylinder, std::allocator<cylinder>
1.67 4.51 2000001/16000012 LB::latticeBolzmannStep (std::vector<elmt, std::allocator<elmt> >&, std:
1.67 4.51 2000001/16000012 LB::latticeBoltzmannFreeSurfaceStep () [6]
10.01 27.08 12000009/16000012 LB::cleanLists () [4]
[3] 86.5 13.35 36.10 16000012+16000012 void std::_ heap select<std::reverse_ iterator<_ gnu cxx:: normal iterator
[3]
16.42 0.00 5451435/5451435 node: :computeApparentViscosity (double const*, FluidMaterial consté&) [8]
8.33 0.00 5372781/5372781 node: :computeEquilibrium (double*) [9]
6.01 0.00 7072394/7072394 node: :addForce (double*, tVect consté&) [13]
3.16 0.00 7512840/7512840 node: :reconstruct () [14]
1.10 0.00 6324299/6324299 node: :solveCollision (double const*) [17]
0.56 0.00 5242043/5242043 node::shiftVelocity(tVect consté&) [18]
0.51 0.00 9011735/9011735 node: :store () [20]
0.01 0.00 9854995/19856644 node: :isFluid () const [30]
0.00 0.00 22744828/22744828 node: :massStream(unsigned int consté&) const [45]
0.00 0.00 22152591/32108542 node::isInterface () const [44]
16000012 void std:: heap select<std::reverse iterator< gnu cxx:: normal iters

calied-isid

el B "icleanlLists()

Second Profile (LB tutorial 1, 50 nodes)

2082 Vv void LB::cleanLists() {

2083 // sorts the active-node list and removes duplicates

2084 std::sort(fluidNodes.begin(), fluidNodes.end());

2085 std::sort(interfaceNodes.begin(), interfaceNodes.end());

e Sort2list

20887 for (int ind = fluidNodes.size() - 1; ind > @; --ind) { Or IS S

2088 node* i = fluidNodes[ind];

2089 node* j = fluidNodes[ind - 1]; P Ite rate both liStS to
2090 if (A==3) ¢ 9
2091 cout << "duplicate-fluid!" << endl;

20892 fluidNodes .erase(fluidNodes.begin() + ind); A t

} remove duplicate
2094 }

2095 for (int ind = interfaceNodes.size() - 1; ind > @; --ind) { elements
2096

node* i = interfaceNodes[ind];
2097 node* j = interfaceNodes[ind - 1];

- e & e Fillanewcombined

cout << "duplicate-interface!" << endl;

2100 interfaceNodes.erase(interfaceNodes.begin() + ind);

m list
2102 ¥

2103

2104 // list with active nodes i.e. nodes where collision and streaming are solved

2105 // solid nodes, particle nodes and gas nodes are excluded

2106 activelNodes.clear();

21097 activeNodes.reserve(fluidNodes.size() + interfaceNodes.size());

2108 activeNodes.insert(activeNodes.end(), fluidNodes.begin(), fluidNodes.end());

2109 activeNodes.insert(activeNodes.end(), interfaceNodes.begin(), interfaceNodes.end());
2110

2111 3

Second Profile (LB tutorial 1, 50 nodes)

e Useaset?

Second Profile (LB tutorial 1, 50 nodes)

e Use aset?
e Thisvalidation code was redundant!
e Before runtime: 2 minute

Second Profile (LB tutorial 1, 50 nodes)

Use a set?
This validation code was redundant!

Before runtime: 2 minute
After runtime: 1 minute

o 1.8xspeedup

o Butit had poor scalability

Third Profile (LB, 2.2 million nodes)

Top Hotspots

Function Module CPU Time % of CPU Time(%)
LB: :smoothenInterface hybird 18493.157s 41.4%
LB: :streaming. omp_fn.1 hybird 3978.943s 8.9%
operator* hybird 2572.052s 5.8%
node: :store hybird 2254.056s 5.0%
gomp_team_barrier_wait_end 1libgomp.so.1 1868.693s 4.2%
[Others] N/A 15531.628s 34.7%

41% of parallel CPU time inside LB : : smoothenInterface()

Third Profile (LB, 2.2 million nodes)

LB: :smoothenInterface() removes nodes neighbouring
empty nodes from fluid nodes.

Pseudocode:

for emptyNode in emptiedNodes:
for neighbour in emptyNode.neighbours:
if neighbour.isValid() and neighbour.isFluid():
newInterfaceNodes.append(neighbour)
neighbour.redistributeMass()
ERROR: TAKE OUT FROM CYCLE, THIS IS KILLING PERFORMANCE
for fluidNode in fluidNodes:
if fluidNode == neighbour:
fluideNodes.erase(fluidNode)

Third Profile (LB, 2.2 million nodes)

That comment is real.

Every fluid neighbour of every empty node, would iterate the
entire fluid list to remove the neighbour if present.

for emptyNode in emptiedNodes:
for neighbour in emptyNode.neighbours:
if neighbour.isValid() and neighbour.isFluid():
newInterfaceNodes.append(neighbour)
neighbour.redistributeMass()
ERROR: TAKE OUT FROM CYCLE, THIS IS KILLING PERFORMANCE
for fluidNode in fluidNodes:
if fluidNode == neighbour:
fluideNodes.erase(fluidNode)

Third Profile (LB, 2.2 million nodes)

3052 // removing from fluid nodes
. . . . 3e53 // ERROR: TAKE OUT FROM CYCLE, THIS IS KILLING PERFORMANCE
Thls IS ObV'OUSly a natu ral f|t for a 3054 for (int ind = fluidNodes.size() - 1; ind >= @; --ind) {
3055 const unsigned int i = fluidNodes[ind]->coord;
Set () 3056 iF (i == link) {
3057 fluidNodes.erase(fluidNodes.begin() + ind);
R 3058 }
e Before: 6 hours 51 minutes)
. 3e6e //nodesToErase.push_back(1link);
. After: 2 hou rS 23 m I n utes 3052 // Store the node we want to erase later
3053 nodesToErase.insert(link);
o 2.87xspeedup
3059 // Process and remove all fluid nodes that have been converted
ResearCherS are a[mOSt a[WGyS 3860 for (int ind = fluidNodes.size() - 1; ind >= 8; --ind) {

familiar With mathematica[Set, 3061 const unsigned int i = fluidNodes[ind]->coord;

3862 if (nodesToErase.find(i) != nodesToErase.end()) {
rare[y the data'StrUCture Set. 3063 fluidNodes.erase(fluidNodes.begin() + ind);

3064 }

3865 }

3066

Fourth Profile (LB, different 10 settings)

e Paraview is used to render
simulations
e HYBIRD exports to ASCIl .wvtk ™
files o
e It would take ~20s to load a
frame from a large https.//github.com/fmtlib/dtoa-benchmark
simulation

e 20.4% of runtime reported
inI0: :ouputStep()

https://github.com/fmtlib/dtoa-benchmark

Fourth Profile (LB, different 10 settings)

e Rewrite for binary .vtk format
o Now exporting whole buffers, rather than
individual doubles
e 10-25x speedup to the 10 method
® 40x speedup to Paraview loading frames!

Get Involved!

SocRSE Slack #sig-rpc
Mailing List (via website)
AGM tomorrow 2pm

We have hex-stickers

Contact me: robert.chisholm@sheffield.ac.uk

