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Lattice Quantum Chromodynamics and the standard model David Wilson 2

~

Strong QCD effects are everywhere - we need lattice QCD .

- Electroweak physics - e.g. determining strong QCD parts needed for CKM elements:
B decays, g,-2, K=nrn (DIRAC - Edinburgh, Glasgow, Southampton, Cambridge, ...)

- Hadron Structure - deep inelastic scattering, parton physics (DiRAC - Edinburgh, ...)
- QCD at finite temperature (DiRAC - Swansea, ...)

- also useful for some strongly coupled beyond the Standard Model theories (DiRAC -
Liverpool, Southampton, Swansea, Plymouth, ...)

- This talk: Hadron Spectroscopy

First principles QCD calculations of hadron
decays and resonances (go beyond simple models)

Blg piCtU re, general features (not yet ready for precision in most cases)

Work concurrently with experiments:
LHCb, GlueX, Belle-Il, BES-III

“Spectroscopy” shows up everywhere -
eg the p in g,-2 calcs, B> K*pp, excited
state effeCtS In ground States’ eee [Fermilab/SLAC symmetrymagazine.org]
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Several large experiments, lots of new data David Wilson 3

- Since 2003 there have been a
wave of discoveries in hadron

spectroscopy Ds(2317), X(3872)

- Several active experiments

_______

- We need to support the
experimental efforts with theory
predictions grounded in QCD

- Most new states involve the
charm quark
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50 years of the charm quark DavidWison 4]

PRL 33 23, J. J. Aubert et al (BNL)
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Several orders of magnitude more data



new hadrons at the LHC David Wilson 5
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Quark model

David Wilson 6

charm quarks are heavy
= get an idea of the spectrum from the Schrodinger equation

potential
70

confining

/r

4 o

37

“QCD inspired”

(but can be computed
with static quarks on a
lattice)
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charmonium resonances David Wilson 7
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Exotic hadrons David Wilson

beyond the simple quark model:

- molecules?

- tetraquarks?

- hybrids?




Lattice QCD

David Wilson 9

Numerically sample the path
integral of QCD in a finite
Euclidean volume

(O) ~ / DUe SO

Compute euclidean-time
finite-volume correlation
functions

C(t) ~ e &nt

No infinities due to:
a (lattice spacing, UV)
L3 (lattice volume, IR)

Periodic BC: no continuum, discrete spectrum

Usually m:>140 MeV

I3 xT

—i Q)



Lattice QCD computational workflow and DiRAC David Wilson 1 ()

F. Stokes et al, University of Adelaide

Gauge ensemble generation.
MPI on (Intel) CPUs

(Most of gauge generation was run by collaborators on machines in the US)

Quark propagator inversions.
previously P100s (Cambridge),
A100s (Edinburgh and Cambridge)

In the Distillation method - we compute these once and
reuse many times

Wick contractions. Our current main use
of DIRAC, Intel CPUs in Cambridge -
Cascade Lake, Icelake, Sapphire Rapids

Correlation functions. Analysed on
smaller machines.



Well-established physics workflow David Wilson 1 1

Lattice
QCD
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scattering with charm quarks 12/17

JY =0" compare : J& =0~

e D(2317) ¢S e D m~1969 MeV

o Dy*(2400) cl e D m~1870 MeV

what is the mass ordering?
ny are the masses so close?
why are the widths so different?

2

Ds0(2317)

140 - BABAR b)
= arXiv:hep-ex/0304021

LHCb
Phys. Rev. D 94, 072001 (2016)

2.1‘ - 2.2‘ - ‘2,3‘ - 2.4 - ‘2.5
m(D, 7°) GeV/c?

3.5 4
mD*m) [GeV]

seen in an isospin breaking Drt S-wave

decay mode



DK I=0 13/17

G. Cheung et al (HadSpec), JHEP 02 (2021) 100 arXiv: 2008.06432

Dso(2317)
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bound states in DK amplitude at both masses similar couplings c~1400 MeV



Dn & DK 14/17

P2t L. Gayer, N. Lang et al (HadSpec), arXiv:2102.04973
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Dn & DK 15/17
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D7n/DK with SU(3) flavour symmetry

David Wilson 1 é

m, = nm,;= m,

—— Effective range (b)
—— K—matrix (d)
—— Other reasonable fits

el a el s
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Dn/DK scattering with SU(3) flavour symmetry

J.D. E. Yeo, C. E. Thomas, Wilson
arXiv:2403.10498

- S-wave interactions in flavour SU(3)
3bar, 6, 15bar

- Virtual bound state sextet pole

- Also deeply bound 3bar state, similar to
Ds0(2317), much greater binding

SU(3) flavour:
D-meson and light meson

38 >3 P6 ¢ 15
31 —3
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charmonium resonances

David Wilson 1 7

Previously:
Ecn/MeV
T Xeo T |
I _TDS :‘thr.
4100 F Xco (1F> Xca (1F>—T Xeo 1| thr.
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spectra from qgqgbar operators only,
Liu et al JHEP 1207 (2012) 126

"HadSpec” lattices

anisotropic (3.5 finer spacing in time)
Wilson-Clover

L/a.=16, 20, 24
mnr = 391 MeV

rest and moving frames

N = 2+1 flavours
all light+strange annihilations included
no charm annihilation

using distillation (Peardon et al 2009)
many channels, many wick contractions

This study: Meson-meson + qqgbar ops

e compute a large correlation matrix
e solve generalised eigenvalue problem
to extract energies



charmonium resonances DavidWilson 18

= X(3960){ > DsDs} e '

| === X(3930) { — DD} } xc2(3930)§{ — DD,DD'}
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= = _“‘_F) ““““ -'.' oy = — _ e ] = — y
w—bb ‘ | Xc2
Xco q ‘ ‘
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o+~ '_'_'«.
Level counting is completely unclear Probably one
* Near threshold behaviour? resonance

e Multiple decoupled resonances?
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charmonium David Wilson

Eem/
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higher scalar amplitudes David Wilson 2
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higher scalar amplitudes - from rest energies only

David Wilson 22
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tensor amplitudes - from rest energies only

David Wilson 23
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some phase space suppression

DD* is large -
similar phase space to DsDs



Finite volume spectrum from Liischer Quantization Condition David Wilson 24
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det[1 +ip-t(1+iM(L))] = 0



Complex plane - scalar DavidWikon 25
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Summary & outlook David Wison 27

had/spec

Scalar and tensor charmonium hadspec.org

- atmz=391 MeV, one scalar and one tensor pole is found.

- The level counting is not obviously different from the quark model

- large coupled-channel effects in OZI connected D-meson channels
- OZl disconnected channels look small everywhere

- we have extracted a complete unitary S-matrix and this naturally connects features
seen in different channels and simplifies the overall picture

- some amplitudes are very different to the simple Breit-Wigners often used in
experimental analyses

- aclear, as yet unobserved, 3++ resonance is present in DDbar* & a bound state in 2-+
- we do not find a near-threshold DDbar state (between 3700 and 3860 MeV)

- these methods can also be applied to the X(3872) 1++ channel

Full details and references:
arXiv: 2309.14070 (7 pages)
arXiv: 2309.14071 (55 pages)



https://arxiv.org/abs/2309.14070
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Summary & outlook DavidWilson 28

had/gpec

hadspec.org

DIiRAC + Lattice QCD for hadron spectroscopy

Large computers and lattice QCD theory are a powerful combination having real world

impact on hadron spectroscopy

- It has proven very useful to have clear first-principles theoretical results given the
complexity of the experimental data

- DIiRAC has been instrumental in enabling these calculations

- Advancement in the last 10 years has been rapid - from simple elastic scattering of
spin-0 hadrons to coupled channel scattering involving many channels including
hadrons with spin

- Future prospects are bright (see for example Max Hansen'’s slides from last year)


http://hadspec.org
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Experimental results

David Wilson 3 O
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resonances around 3925 MeV

no need for a low O++ resonance



what’'s going on near DDbar threshold? David Wilson 3
1 1
S=1+42ip? -t p?
P= KT 4T K — | Tnen—=nen Tnen—DD
Ime = —p; = 2]{1/\/5 ’yncn—ﬂ)l_) YDD—DD
det[l +ip-t(1+iM(L))] =0
pipltil® JPC =0t @t Erem [000] AY
0.6 X
0.4 0.66 TS
using rest-frame only
021 nen — nene{ “So} o 3 3
nen — DD{'So} 0.62}
DD — DD{'Sy} ;
AYE 0.64 0.65 0.66 0.67 068 069 a;F.m 000 11?6 ;) 24 L/as
Yomonn = (0.3440.23+0.09) [1.00 077 —0.24
Yonspp = (0.58%0.29 % 0.05) 1.00 —0.22
Yooopp = (1.39+£1.19+0.24) | 1.00

X /Naot = 1525

= 0.81




(smaller range)

what’'s going on a DDbar threshold?

David Wilson
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using zero and non-zero total momentum
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