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• Investigate alternative noise scheduling to control the statistical behaviour.

• Include density estimations and develop algorithm to be exact via 

accept/reject step.

• Study the evolution of the non-local correlation function in the diffusion 

process.

• Apply to large scale lattice simulations.
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• Diffusion models learn distributions from data

• Relies on two stochastic processes [4] to learn the score function ∇ log 𝑃

𝜕𝑡𝜙 𝑥, 𝑡 = 𝐾 𝜙 𝑥, 𝑡 , 𝑡 + 𝑔 𝑡 𝜂 𝑥, 𝑡   (Forward),

𝜕𝜏𝜙 𝑥, 𝑇 − 𝜏 = −𝐾 𝜙 𝑥, 𝜏 , 𝑇 − 𝜏 + 𝑔2 𝑇 − 𝜏 ∇𝜙 log 𝑃(𝜙, 𝑇 − 𝜏) +

𝑔 𝑇 − 𝜏 𝜂 𝑥, 𝜏   (Backward).

• Estimate the score of a distribution based on a sample dataset of the target 

distribution with score-matching

• Approximate score function with model 𝑠𝜃(𝜙, 𝑡)

• Train using the Fisher objective [3]

𝐿𝜃 ∝ 𝐸𝑝𝑡 𝑥 [ 𝑠𝜃 𝜙, 𝑡 − ∇ log 𝑃(𝜙, 𝑡) 2]

• Obtain samples using the estimated score, 𝑠𝜃 𝑥, 𝑡 ≈ ∇ log 𝑃(𝜙, 𝑡), via 

backwards process

• Use time-conditioned architectures: Feedforward NN (toy model) [1] & U-net 

(field theory) [2]

• Weighted training objective [4]:

𝐿 𝜃, 𝜆 ≔
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𝔼 𝑝𝑡 𝑥 [𝜆 𝑡 𝑠𝜃 𝜙, 𝑡 − ∇ log 𝑃(𝜙, 𝑡) 2]𝑑𝑡

where 𝜆 𝑡  is chosen to be the variance of the noise at time 𝑡.

For the case of linear drift 𝐾[𝜙 𝑥, 𝑡 , 𝑡] = −
1

2
 𝑘 𝑡 𝜙(𝑥, 𝑡), the solution of the 

forward process:

𝜙 𝑥, 𝑡 = 𝜙 𝑥, 0 𝑓 𝑡, 0 + න
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𝑑𝑠 𝑓 𝑡, 𝑠 𝑔 𝑠 𝜂(𝑥, 𝑠) ,
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• Moments and cumulants are generated by 𝑍 𝐽 = 𝔼[𝑒𝐽 𝑥 𝜙(𝑥,𝑡)] and 

𝑊 𝐽 = log 𝑍[𝐽], respectively.

• Higher-order cumulants are then given by

𝜅𝑛>2 𝑡 =
𝛿𝑛𝑊 𝐽

𝛿𝐽 𝑥, 𝑡 𝑛
ቚ

𝐽=0

• First two even-order cumulants read

𝜅2 𝑡 = 𝜇2 0 𝑓2 𝑡, 0 + Ξ 𝑡 , Ξ 𝑡 = න
0

𝑡

𝑑𝑠 𝑓2 𝑡, 𝑠 𝑔2 𝑠

𝜅4 𝑡 = 𝜇4 𝑡 − 3𝜇2
2 𝑡 = [𝜇4 0 − 3𝜇2

2 0 ]𝑓4(𝑡, 0) = 𝜅4 0 𝑓4(𝑡, 0)

• In general, we find [1]

𝜅𝑛>2 𝑡 = 𝜅𝑛>2 0 𝑓𝑛 𝑡, 0 .

• In pure diffusion (VE), 𝑓 𝑡, 𝑠 = 1, cumulants remain constant. Final 

distribution of the forward process remains as correlated as the target 

distribution. 

Finally, we show the normalised 2nd and 4th in the two-dimensional 𝜙4 field 

theory, with 𝜅 = 0.4, 𝜆 = 0.022 and 105 configurations on a  322 lattice, during the 

forward (left) and backward (right) process in the VE scheme. 

Diffusion Models

Problem statement: Diffusion models
• Often stated that the data at the end of the noising process is close to 

random [4].

• How correlations beyond Gaussian ones evolve is less understood.

• Cumulants/Higher-order correlations are of relevance in lattice field theory.

Our contribution [1]
• We derive explicit expressions for the cumulants’ evolution for variance-

expanding (VE) & variance-preserving (VP) processes.

• In the VE scheme, higher-order cumulants remain constant during evolution.

• In the VP scheme, higher-order cumulants decay exponentially in the 

noising process.

• We demonstrate these facts numerically for,

• Double peak toy model (1D data), 

𝑃 𝑥; 𝜇, 𝜎2 =
1

2
[𝒩 𝑥; 𝜇0, 𝜎0

2 + 𝒩(𝑥; −𝜇0, 𝜎0
2)]

• Lattice scalar field theory (32x32 images) [2]

𝑆 𝜙 = ෍
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−2𝜅 ෍

𝜈=1

𝑛

𝜙𝑥𝜙𝑥+𝜈 + 𝜙𝑥
2 + 𝜆 𝜙𝑥

2 − 1 2 ,

𝑃 𝜙 =
1

𝒵
𝑒−𝑆 𝜙 , 𝒵 = ∫ 𝒟𝜙 𝑒−𝑆 𝜙 .

The numerical work shown below supports our analytical predictions. We present 

the evolution of the normalised 4th, 6th and 8th cumulants in the two-peak model 

with µ0 = 1, σ0 = 1/4, in the variance-expanding scheme, during the forward 

process, using 105,106 and 107 trajectories (above), and during the backward 

process, with the score determined by the diffusion model, using 106 trajectories 

(below).

Similarly, we show the evolution of the normalised 4th, 6th and 8th cumulants for 

the same model in the variance-preserving scheme, during the forward process 

(above), and the backward process (below) using 106 trajectories.

The table shows the first four non-vanishing cumulants 𝜅𝑛 in the scalar 𝜙4 field 

theory using normalised HMC data and as obtained from the diffusion model. 
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