Higher-order cumulants in diffusion models
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ntroduction & Overview

Problem statement: Diffusion models The numerical work shown below supports our analytical predictions. We present

Of d that the d . d of th .. < ol the evolution of the normalised 4th, 6th and 8th cumulants in the two-peak model
ra;?jr(])r?\t?étﬁ that the data at the end of the noising process Is close 1o with by = 1, oy = 1/4, in the variance-expanding scheme, during the forward

_ _ _ process, using 10°,10% and 107 trajectories (above), and during the backward
 How correlations beyond Gaussian ones evolve is less understood.

. . . . process, with the score determined by the diffusion model, using 10° trajectories
« Cumulants/Higher-order correlations are of relevance in lattice field theory. (below)

Our contribution [1]

We derive explicit expressions for the cumulants’ evolution for variance-
expanding (VE) & variance-preserving (VP) processes.
* In the VE scheme, higher-order cumulants remain constant during evolution.
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* In the VP scheme, higher-order cumulants decay exponentially in the o ﬁd I ; or _
noising process. ST T & RN S T T P I T T P R T
. 0.0 0.2 (hd 0.6 (.8 1.0 ) ) ] M : ) ) ) 1 0.6 0.3 1.0

 We demonstrate these facts numerically for, t B e vy

* Double peak toy model (1D data),

ooy
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P(X, KU, 0-2) — E [N(x) Ho, 0-02) + N(x) —Ho, 0-02)] — Emg
| 200
 Lattice scalar fleld theory (32x32 images) [2] gmmu;
S[¢] — z —2K Z Gy Dty T ¢x + A(d)x ) ) r;,u
X L _ OF
P[o] _1 -S|¢] Z = [ D e 5P _ T . . . T
¢l = € ‘ =JDope | Similarly, we show the evolution of the normalised 4th, 6th and 8th cumulants for

_ _ the same model in the variance-preserving scheme, during the forward process
DIfoSIO N |\/|Od e|S (above), and the backward process (below) using 10° trajectories.

 Diffusion models learn distributions from data

* Relies on two stochastic processes [4] to learn the score function Vlog P

0.p(x,t) = K[op(x,t),t] + g(t)n(x,t) (Forward),

0:¢0(x, T — 1) = =K[¢p(x,7),T — 7] + g*(T — 1)Vy4 logP(¢, T — 7) +
g(T — t)n(x,7) (Backward).

* Estimate the score of a distribution based on a sample dataset of the target
distribution with score-matching

(.85

* Approximate score function with model sg (¢, t) ) J—Y Sy ]
. . . . . [ Analytic ] L i Analytic )
 Train using the Fisher objective [3] L jl-, e i warres DL T | P — : Ll e
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« Obtain samples using the estimated score, sg(x,t) = Vlog P(¢,t), via Finally, we show the normalised 2nd and 4th in the two-dimensional ¢* field
backwards process theory, with k = 0.4,1 = 0.022 and 10° configurations on a 322 lattice, during the

. i . f lef K Igh In the VE sch .
« Use time-conditioned architectures: Feedforward NN (toy model) [1] & U-net orward (left) and backward (right) process in the scheme

(field theory) [2]

« Weighted training objective [4]: B m
1 r | IE-IZIE

L@, A) = j E . o [A(0)1s6 (¢, £) — Vlog P(, 0)]2]dt
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where A(t) is chosen to be the variance of the noise at time t. N:

Generating Functional

For the case of linear drift K[¢p(x, t),t] = —% k(t)op(x,t), the solution of the

The table shows the first four non-vanishing cumulants x,, in the scalar ¢* field
theory using normalised HMC data and as obtained from the diffusion model.

f d . K9 K4 Ke K8
orward process: HMC (normalised) | 0.39597(4) | —0.29453(6) | 0.90108(28) | —5.8689(25)

d(x,t) = d(x, 0)f(t,0) + j tds £(6,5)g(s)n(x, s), Diffusion model | 0.39598(4) | —0.29454(7) | 0.90113(32) | —5.8694(28)
0

1 t
f(t,s) = exp (_ffs dS’k(S’)) Outlook

« Moments and cumulants are generated by Z[J] = E[e/®¢®D] and

W[J] = log Z[]], respectively. * Investigate alternative noise scheduling to control the statistical behaviour.
+ Higher-order cumulants are then given by  Include density estimations and develop algorithm to be exact via
S"W /] accept/reject step.
Kn>2(t) — ‘ _

6J(x, )™ lj=0

 First two even-order cumulants read

t : : .
i, () = 1, (0)f4(t,0) + Z(¢), 2(t) = f ds f2(t,s)g2(s)  Apply to large scale lattice simulations.
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» In general, we find [1] References

Kn>2(t) = Kn52(0) (2, 0).

« Study the evolution of the non-local correlation function in the diffusion
process.
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