### Simulating stellar explosions:

supernovae and neutron star mergers

**Stuart Sim** 



Fionntan Callan, Josh Pollin, Luke Shingles, Christine Collins James Gillanders





#### Type la supernovae



12/12/2023

#### **DiRAC Science Day**

#### Established picture for SN Ia explosion



### Supernovae Ia: diverse and complex



12/12/2023

#### **DiRAC Science Day**

# What is the physics at work?

#### Type la supernova questions:

- How explosions are ignited
- Deflagration or detonation
- Chandrasekhar or sub-Chandrasekhar mass
- Progenitors and evolutionary channels

#### Modelling aims to understand:

- Explosion physics and nucleosynthesis
- Origin of diversity
- Implications for cosmology samples







#### 12/12/2023

#### **DiRAC Science Day**

### Simulating supernovae



### **Explosion scenarios**

# (Near-)Chandrasekhar-mass single-degenerate scenario

- White Dwarf in binary system
- Mass-transfer grows WD mass
- Density and temperature rise
- Thermonuclear runaway ignites a deflagration



### Lach et al. deflagration models



Simulations by Fink+10, Lach+21

- Low-luminosity explosions
- Partial disruption only ("zombie star" remnant)

### Lach et al. deflagration models



Simulations by Fink+10, Lach+21

- Low-luminosity explosions
- Partial disruption only ("zombie star" remnant)

### Lach et al. deflagration models



Simulations by Fink+10, Lach+21

- Low-luminosity explosions
- Partial disruption only ("zombie star" remnant)



#### Type lax versus pure deflagrations



#### Type lax versus pure deflagrations



#### Figure from Lach+21

- Models match brightness and peak spectra well
- Decline generally too fast
- Potential role of energy from remnant (Callan PhD)

### Incorporating the "zombie" star



Figure from Callan+, in prep.

Contribution from remnant slows decline

#### Sub-Chandrasekhar-mass double-– WD accretes from He-rich companion

- Detonation of the He shell triggers a detonation of the C+O core

He shell **C+O** cor

#### Sub-Chandrasekhar-mass double**detonation** WD accretes from He-rich companion

- Detonation of the He shell triggers a detonation of the C+O core



#### 2D Survey (Gronow/Collins):

- Can match normal luminosity
- Large orientation effects
- Models are red and fast
- Helium ash very influential E



M08 03

M08 05

M09\_03

M09\_05

M09 10 r

M08\_10\_r

Signatures of Helium (full NLTE simulations; Collins+ 2023)



#### Kilonovae: neutron star mergers and the r-process





- UV, optical and NIR fading emission
- Radioactively heated, thermal emission



### **NS-NS** mergers



- Origin of the elements (Burbidge, Burbidge, Fowler & Hoyle 1957, Cameron 1957 Lattimer & Schramm 1974, Pagel 1997)
- Neutron star physics, extreme states of matter

### Spectra: feature identification



Well-calibrated spectra

Smartt et al. 2017 Pian et al. 2017

(+ HST Tanvir et al. 2017)

12/12/2023

## Spectra: feature identification

#### Empirical 1D modelling

- Smartt+ 17
- Watson+ 19
- Gillanders+ 21,22

#### Sr identification (Watson+ 19)

- Indicative of light r-process
- Other possibilities, including He
- Recent Y identification (Sneppen+ 23)



# Complex morphology expected



Kasen+ 17, schematic

<sup>2</sup> <sup>4</sup>40 -230 -0.20 -0.10 -0.00 -0.10 -0.20 -0.30 -0.40 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -

#### Bauswein simulation (Collins+ 23)

#### First ARTIS results (Shingles et al. 2023)

• Simulation of dynamical ejecta



#### First ARTIS results (Shingles et al. 2023)

- Simulation of dynamical ejecta
- Highly aspherical



#### First ARTIS results (Shingles et al. 2023)

• Simulation of dynamical ejecta



### Constraining geometry



#### Does spectral analysis require / support this

12/12/2023

structure

**DiRAC Science Day** 

#### First ARTIS results (Shingles et al. 2023) - proof of concept:

- Simulation of dynamical ejecta
- Departures from spherical symmetry are strong
- Remarkable (qualitative) agreement, but only for some orientations
- Continuing analysis to guide interpretation of observation (Collins et al. 2023, submitted)



#### HEAVYMETAL (ERC Synergy, from Sep 23)





# Summary

- Radiation transport simulations are needed to test models and interpret data
- Multi-D and non-LTE effects matter
  - Neglecting either leads to systematic discrepancies
  - Just now becoming possible to address both

#### Type la supernovae

- Diversity motivates range of scenarios
- Sub-Chandrasekhar detonations promising for Type Ia He in ignition is key
- Chandrasekhar mass deflagrations may account for Type lax
- Promise lies in late phases to understand inner ejecta
- Neutron star mergers and kilonovae
  - Demonstrated power to identify species, study stratification and geometry
  - Realistic prospect of extracting detailed r-process information from data, but depends on combining simulation, theory, atomic physics, nuclear physics and observation
  - Beyond lies constrains on properties of ultra-dense matter





#### 12/12/2023

#### **DiRAC Science Day**

### Thank you!



#### Need for atomic data and calibration



#### **DiRAC Science Day**

#### Need for atomic data and calibration

