Virgo-I: The Milky Way’s plane of satellites is consistent with ΛCDM

Till Sawala, Marius Cautun, Carlos Frenk, John Helly, Jens Jasche, Adrian Jenkins, Peter Johansson, Guilhem Lavaux , Stuart McAlpine, Matthieu Schaller

                    Nature Astronomy, in press, 2022NatAs.tmp.273S (arXiv.2205.02860)

In the 1970s, the great Cambridge astronomer, the late Professor Donald Lynden-Bell, noted that the 11 bright satellites orbiting the Milky Way seem to be arranged in an implausibly thin plane piercing through our galaxy – the Milky Way’s “plane of satellites”. To add to the mystery, it was later argued that these galaxies are circling the Galaxy in a coherent, long-lived disk. These observations became known as the “plane of satellites problem” of the standard cosmological model, LCDM, wherein the Galaxy is surrounded by a roughly spherical, dispersion-supported dark matter halo.

Positions and orbits of the 11 classical satellite galaxies of the Milky Way seen “edge-on”, integrated for 1 billion years into the past and future. The right panel is a zoom-in of the left panel. The black dot marks the centre of the Milky Way, arrows mark the observed positions and the directions of travel of the satellites. While they currently line up in a plane (indicated by the grey horizontal line), that plane quickly dissolves as the satellites move along their orbits.

We have shown that the reported exceptional anisotropy of the Milky Way satellite system is strongly contingent on its lopsided radial distribution, combined with the close but fleeting conjunction of the two most distant satellites, Leo I and Leo II. Using Gaia proper motions, we show the plane of satellites to be transient rather than rotationally supported.

One of the new high-resolution simulations of the dark matter enveloping the Milky Way and its neighbour, the Andromeda galaxy. The new study shows that earlier, failed attempts to find counterparts of the plane of satellites which surrounds the Milky Way in dark matter simulations was due to a lack of resolution.

We carried out 202 high-resolution cosmological zoom-in constrained simulations on COSMA-8, based on initial conditions designed to reproduce Local Group analogues within the observed large-scale structure. We show that the failure of previous simulations to find thin, seemingly rotationally-supported satellite planes is entirely due to their limited resolution. We address this shortcoming by using the GALFORM semi-analytic galaxy formation model to identify “orphan” satellites whose dark matter halos have been artificially disrupted. In this way, the radial distribution of the satellites in our simulations is consistent with the Milky Way data. Our simulations demonstrate that satellite alignments are short-lived, just as inferred for the Milky Way. Finally, the simulations reveal that planes of satellites as thin as that of the Milky Way and whose orbital poles have a similar degree of spatial coherence as in the Milky Way are not uncommon in LCDM. Rather, the failure to find them in previous simulations was due to resolution limitations in the very dense central regions of halos.

SIBELIUS-DARK: a galaxy catalogue of the Local Volume from a constrained realisation simulation

Stuart McAlpine, John Helly, Matthieu Schaller, Till Sawala, Guilhem Lavaux, Jens Jasche, Carlos Frenk, Adrian Jenkins, John Lucey and Peter Johansson

Monthly Notices of the Royal Astronomical Society, 2022, tmp.348M

Over the past thirty years cosmologists have developed a standard model of cosmology — Lambda Cold Dark Matter (LCDM) which explains a plethora of astronomical data, from the properties of the microwave background radiation (the heat left over from the Big Bang) to the number and spatial distribution of galaxies in the Universe. Computer simulations lie at the heart of this development: they allow predictions to be made of the distribution of dark matter and galaxies, especially in the non-linear regime, the best observed.

Cosmological simulations usually follow a “typical” patch of a LCDM Universe. But the simulations of the Sibelius project are different: using advanced statistical techniques, they are conditioned to reproduce, by the present day, the structures that we see in the local universe, specifically in the 2MASS+ galaxy survey.

The volume simulated in Sibelius is a sphere around us of radius 200 Mpc. Galaxies in this dark matter-only simulation are followed with the semi-analytic galaxy formation model GALFORM. Structures familiar to astronomers, such as the Virgo, Coma and Perseus clusters of galaxies, the “Great Wall” and the “Local Void” — our cosmic habitat – emerge from LCDM initial conditions and are faithfully reproduced in the simulation. At the centre there is a pair of galaxies, the virtual counterparts of our own Milky Way and our massive neighbour, the Andromeda galaxy. Sibelius enables novel tests of LCDM and of galaxy formation theory. In addition it offers the possibility of studying in detail the formation paths and physical properties of objects such as the galaxy clusters in our local neighbourhood.

Left: dark matter distribution in a 50x50x50 Mpc region centred on the Milky Way, coloured by the projected density and velocity dispersion of the particles. Our two most massive neighbours, the Virgo cluster and the Fornax/Eridanus groups, are highlighted. Middle and right: zooms into a 15x15x15 Mpc and 5x5x5 Mpc regions, respectively. The right panel highlights the location of the Milky Way and Andromeda (M31). Images are shown in 𝑦–𝑧 equatorial coordinates, projected down the 𝑥 axis.