Hadron Spectroscopy: Baryon Mass Splittings

Hadron Spectroscopy: Baryon Mass Splittings

In Cheung et al [JHEP 1612 (2016) 089, arXiv:1610.01073] we computed spectra of highly excited charmonia and charmed mesons with light (up and down) quark masses, corresponding to mπ ≈ 240 MeV, closer to their physical masses than in our earlier study where mπ ≈ 390 MeV. A highlight of the results was the presence of hybrid mesons (where the gluonic field is excited), some of which had exotic quantum numbers (cannot be solely a quark-antiquark pair). The resulting phenomenology of hybrid mesons gave insight into the effective low-energy gluonic degrees of freedom. One main conclusion was that the spectra showed only mild dependence on the light-quark mass, and the pattern of states, in particular the hybrid mesons, did not change significantly as the light-quark mass was reduced. This is an important systematic check and suggests that the interesting phenomenology of excited and hybrid mesons we found is not an artefact of working with unphysically-heavy light-quark masses.

 Figure 1. The spectrum of excited D mesons (containing a charm quark and a light antiquark).

Figure 1 shows the spectrum of excited D mesons (containing a charm quark and a light antiquark) labelled by JP (J is spin, P is parity): green and red boxes are the computed masses and one-sigma statistical uncertainties with red highlighting states identified as hybrid mesons; black lines are experimental values.

hadspec1.png
 Figure 2. The various S-wave (orbital angular momentum = 0) cross sections: upper (lower) panel shows quantities proportional to the diagonal (off-diagonal) cross sections.

In Moir et al [JHEP 1610 (2016) 011, arXiv:1607.07093], we presented the first ab-initio study of coupled-channel scattering involving charm mesons (and the first lattice QCD study of three coupled scattering channels). Working with light-quark masses corresponding to mπ ≈ 390 MeV, from computations of finite-volume spectra we determined infinite-volume Dπ,Dη,Ds K isospin-1/2 scattering amplitudes. Figure 2 shows the various S-wave (orbital angular momentum = 0) cross sections: upper (lower) panel shows quantities proportional to the diagonal (off-diagonal) cross sections. The singularity structure of the amplitudes showed a near-threshold bound state in JP=0+ corresponding to the physical D0*(2400) resonance, a deeply bound state with JP=1 corresponding to the D*, and evidence for a narrow JP=2+ resonance. This study represents a significant step toward addressing some puzzles in the spectroscopy of charmed mesons.