New research, led by the University of Leeds, offers an explanation for the discrepancy between the size and age of the Rosetta Nebula’s central cavity and that of its central stars.

The Rosette Nebula in the Milky Way Galaxy, roughly 5,000 light-years from Earth, is known for its rose-like shape and distinctive hole at its centre. The nebula is an interstellar cloud of dust, hydrogen, helium and other ionised gases with several massive stars found in a cluster at its heart.
Stellar winds and ionising radiation from these massive stars affect the shape of the giant molecular cloud. But the size and age of the cavity observed in the centre of Rosette Nebula is too small when compared to the age of its central stars — something that has has puzzled astronomers for decades.
Through computer simulations run in part on DiRAC Resources, astronomers at Leeds and at Keele University have found the formation of the Nebula is likely to be in a thin sheet-like molecular cloud rather than in a spherical or thick disc-like shape, as some photographs may suggest. A thin disc-like structure of the cloud focusing the stellar winds away from the cloud’s centre would account for the comparatively small size of the central cavity.
Study lead author, Dr Christopher Wareing, from the School of Physics and Astronomy said: “The massive stars that make up the Rosette Nebula’s central cluster are a few millions of years old and halfway through their lifecycle. For the length of time their stellar winds would have been flowing, you would expect a central cavity up to ten times bigger.”

“We simulated the stellar wind feedback and formation of the nebula in various molecular cloud models including a clumpy sphere, a thick filamentary disc and a thin disc, all created from the same low density initial atomic cloud.
“It was the thin disc that reproduced the physical appearance – cavity size, shape and magnetic field alignment — of the Nebula, at an age compatible with the central stars and their wind strengths.”
More information on this result can be found here, the STFC Press Release can be found here and Alt-metrics for the paper, indicating it has had a very high level of attention, can be found here here.