The Advanced LIGO and Virgo detectors were undergoing an upgrade during 2018, so the year was devoted to completing analyses of data from the first two observing runs (O1 and O2), and preparations for the third observing run (O3), due to start in April 2019.
The chief results from the LIGO and Virgo collaborations were the final estimates of the physical properties of the binary-neutron-star merger, GW170817, including stronger constraints on the neutron star tidal deformability, and therefore its equation of state and radius; and the release of the first catalogue of observations from O1 and O2, based on a re-analysis of all data, which in turn had undergone improved characterisation and cleansing. This re-analysis uncovered new signals in the data, and doubled the number of observed black hole binary mergers from five to ten. This included re-classifying the marginal “LIGO-Virgo transient” from October 12, 2015 as a bona-fide GW signal, and among the new signals, GW170729, which is likely the most massive binary yet observed, at around 85 solar masses. All of this work used the waveform models that were calibrated to numerical-relativity simulations performed on DiRAC.

Modelling work also continued. The first inspiral-merger-ringdown model to include higher signal harmonics (PhenomHM) was published in Physical Review Letters, and is now being used to update the measurements of the properties of GW170729. The bulk of the most extensive and systematic set of simulations of precessing binaries was completed on Cosma6, and a preliminary model of the precession effects through merger and ringdown (the first of its kind) was completed, with publication expected in 2019, for use in analysis of O3 observations.